HardwareBee
https://www.nuvation.com/
  • Find ASIC Vendors
  • Design Services Directory
    • FPGA Design Services
    • Electronic Design Services
    • Embedded Software Companies
    • Add your company
  • Get Price Quotes From Vendors
    • Electronic Design Companies
    • FPGA Design Companies
    • Embedded Software Companies
    • Design & Manufacturing Companies
    • Get IC Device Prices
  • Emerging ICs Directory
    • UWB
      • Spark Microsystems
    • FPGA
      • Colonge Chip
      • Rapid Silicon
    • Radar
      • Acconeer
    • Add your IC
  • Get IC Prices
  • WikiBee
  • Resources
    • FPGA Academy
    • Embedded Academy
    • FPGA vs ASIC Calculator
    • Watt to dBm Converter
    • dBm to Watt Converter
  • Pricing
    • Get Your Company Listed
    • Book a Demo
    • Get a Monthly Lead List
HardwareBee
  • Design Services Directory
    • FPGA Design Services
    • Electronic Design Services
    • Embedded Software Companies
    • Add your company
  • Get Price Quotes From Vendors
    • Electronic Design Companies
    • FPGA Design Companies
    • Embedded Software Companies
    • Design & Manufacturing Companies
    • Get IC Device Prices
  • Emerging ICs Directory
    • UWB
      • Spark Microsystems
    • FPGA
      • Colonge Chip
      • Rapid Silicon
    • Radar
      • Acconeer
    • Add your IC
  • Get IC Prices
  • WikiBee
  • Resources
    • FPGA Academy
    • Embedded Academy
    • FPGA vs ASIC Calculator
    • Watt to dBm Converter
    • dBm to Watt Converter
  • Pricing
    • Get Your Company Listed
    • Book a Demo
    • Get a Monthly Lead List
3256 Views

Beyond SPICE – Analog/Mixed Signal Simulation

13/08/2019, hardwarebee

Get a Price Quote

Many electronics developers are very familiar in doing circuit simulation using SPICE (Simulation Program with Integrated Circuit Emphasis) models, netlist and a SPICE simulator tool. There are quite some tools in the market, even some of them free of charge. In this article, I like to inspire a little bit to go beyond using only SPICE in circuit simulation and do AMS – Analog/Mixed Signal simulation.

 

Now, what is AMS?

 

A simple, yet striking example will be a H-Bridge circuitry driving an electrical motor. The H-Bridge itself being driven by more or less complex digital PWM signal (clk1, clk2) coming from say a Microcontroller or an FPGA. See a schematic of such a setup.

 

Essentially, we have several domains. The PWM might be described by some piece of C-language code running inside a Microcontroller or as shown in the example in VHDL. The discrete components, such as the power transistors and diode could be easily represented by SPICE models.

 

How could be model the DC-Motor? A DC-Motor is a device having two terminals, thru which is flowing an electrical current and across which is an electrical voltage. Depending on the motor’s characteristic equations, current is turned into a torque at the motor shaft and an angular velocity. If you are familiar with SPICE, you will agree, this is not so straight forward to model a DC-motor using SPICE notation. Even more, the DC-Motor shaft has some “load” attached to it. So we could be interessted to model the behavior of a moment of inertia. In the particular example, the shaft shall have a min. and max. position and when motor turns the shaft into min/max positions, we like to mimic in the simulation a stronger counter force. All this is too much for SPICE notation, or say better, SPICE wasn’t developed to descibe all of this in any easy way. However, the language VHDL-AMS was designed to deal with such use case. VHDL-AMS is an extension of the VHDL that FPGA and IC-Designer are used to work with. It got extended to described analog behavior. See the Spice or VHDL-AMS code behind some symbols.

 

Transistor modelled in SPICE.

 

PWM Signal in this case modelled like a Clock in VHDL

 

DC-Motor modelled in VHDL-AMS by it system equations

 

Let me show three fundamental examples and a more complex one. A Resistor, a Capacitor, an Inductor and a Fuse. While in SPICE, essentially R, L and C and primitives, they aren’t primitives in VHDL-AMS but described by their system equations.

R, L, C have two terminals and a physical quantity (electrical current) THROUGH the terminals and a physical quantity (electrical voltage) ACROSS the terminals. And with this, R, L, C is described like this.

Resistor fulfills Ohm’ law: Voltage = Resistance * Current

Here the code of an Inductor: Voltage = Inductance * dI/dt

Likewise a Capacitor described by equations: Voltage = C * dI/dt

Now let us see a “fuse”. A “fuse” is not a primitive component in SPICE and you can search the web for even PhD works about how to model the behavior of a fuse in SPICE by using a mix of controlled current and voltage sources and those alike primitives of SPICE. Here is the code how a fuse could be modelled in VHDL-AMS and describing its thermal behavior until melting point. This is just one example to model a fuse.

Coming back to the H-Bridge driving a DC-Motor. Now that we modelled all relevant parts, if we do a simulation, we might look into time-domain plots. Putting all together, you see simulation results being a true mix of digital and analog electrical signals along with other physical quantities such a torque in NM or the angle of the shaft in radians.

 

Now you understand better what is meant by “Analog Mixed Signal”.

 

Such a AMS Tool, like PADS AMS, comes with a library. The library brings a lot more models of functionality like Filters, Pumps, Gears. But moreover, you can also find in the web VHDL-AMS model libraries. Search for example the Web with key such as VHDL AMS, Automotive and you will find plenty of resources.

 

I find it pretty cool and like to mention that there is also a free cloud based version available for this technology. AMS Cloud

 

Hans Hartmann, Consultant

 

Acronyms

SPICE = (Simulation Program with Integrated Circuit Emphasis)

FPGA = Field Programmable Gate Array

VHDL = VHSIC Hardware Description Language

VHSIC = Very High-Speed Integrated Circuit

 

Sources

(1) Mentor A SIEMENS Business, Users Manual of “PADS AMS” Software and example libraries therein. https://www.pads.com/analog-mixed-signal/

 

___________________________________________________

This is a guest post by Hans Hartmann, Director Sales and Marketing at Zitzmann GmbH, Founder EDA4YOU Sales Rep, Founder DELBOtronik GmbH

linked in icon
Sign up for HardwareBee
* = required field

Recent Stories

CEO Talk: Maarten Kuper, QBayLogic
CEO Talk: Maarten Kuper, QBayLogic
Low ESR Capacitor: Ultimate Guide
Low ESR Capacitor: Ultimate Guide
The Ultimate Guide to PWM Controller
The Ultimate Guide to PWM Controller
What is a Piezo Driver IC and how to Choose one
What is a Piezo Driver IC and how to Choose one
Introduction to Hall Effect Sensor ICs
Introduction to Hall Effect Sensor ICs
The Ultimate Guide to: Oscillator ICs
The Ultimate Guide to: Oscillator ICs
Low Noise Amplifier: Ultimate Guide
Low Noise Amplifier: Ultimate Guide
ASIC Prototyping
Get 3 Quotes from Electronic Design Companies
Get 3 Quotes from FPGA Design Companies
Get 3 Quotes from Embedded SW Services
Get 3 Quotes from EMS Companies

Find Design Services

Get IC Prices

Get Price Offers From
  • Electronic Design Services
  • FPGA Design Services
  • Embedded Software Companies
  • PCB Layout Services
  • Printed Circuit Board Manufacturers
  • Design & Manufacturing Services
Welcome New Vendors
  • VVDN Technologies
  • Spark Product Innovation
  • QBayLogic
  • Fidus Systems
  • nao.design
Browse Vendor Directories
  • Electronic Design Companies
  • FPGA Design Companies
  • Embedded Software Services
  • Manufacturing Companies
Featured Vendor

VVDN Technologies

Recent Posts
  • CEO Talk: Maarten Kuper, QBayLogic
  • Low ESR Capacitor: Ultimate Guide
  • The Ultimate Guide to PWM Controller
  • What is a Piezo Driver IC and how to Choose one
  • Introduction to Hall Effect Sensor ICs
Most Popular Blog Posts
  • FPGA for AI (Artificial Intelligence): Ultimate Guide
  • PCB Stackup: Ultimate Guide and Examples
  • FPGA Video Processing: Ultimate Guide
  • The Ultimate Guide to Logic Chips
  • Cost of Electronic Manufacturing: A Guide

Never miss an update!

Follow us on LinkedIn

Do you need any price
information?

(Electronic design, FPGA design, Embedded SW services, PCB design, Turnkey)

Yes
No
This page is sponsored by
HardwareBee

Copyright 2017-2024, HardwareBee. All rights reserved.

  • About Us
  • Contact
  • Subscribe
  • News
  • Get Free Support
  • Get listed
  • Send a wiki/article
  • Advertise

Follow Us

Be sure to follow our LinkedIn company page where we share our latest updates LinkedIn
Partner with us Partner with us

Design and Manufacturing Services

  • Engineering Design Services
  • Electronic Design and Manufacturing
  • Electronic Product Development
  • Electronic Product Design
  • Electronic Consulting Services
  • Electronic Engineering Companies
  • Electronic Engineering Services
  • Electronic Product Design and Development
  • Electronics Design Services
  • Electronics Design Company
  • Electronic Design Consultants
  • Electronic Design Company
  • FPGA Design Company
  • FPGA Consultant
  • FPGA Design Services UK
  • Electronics Manufacturing services
  • Electronics Manufacturing Companies
  • Electronic Contract Manufacturing Companies
  • Electronic Manufacturing Services Companies
  • EMS Companies Directory
  • Electronic Design Services
  • FPGA Design Services
  • Embedded Software Companies
  • PCB Layout Services
  • Printed Circuit Board Manufacturers
  • Design and Manufacturing Services
X

Don’t miss anything, follow us on LinkedIn

https://www.linkedin.com/company/hardwarebee/

We are using cookies to give you the best experience on our website.

You can find out more about which cookies we are using or switch them off in .

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

3rd Party Cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!

Additional Cookies

This website uses the following additional cookies:

(List the cookies that you are using on the website here.)

Please enable Strictly Necessary Cookies first so that we can save your preferences!